
PX-Job 3.3

General

－ PX-Job: command line based PC-Axis file managing application

– meant especially for routine process automation

– the commands may be given directly from the command line
or via specific command files (e.g. bat or cmd text files)

– may be called from other applications
(the return code for a successful operation is 0)

－ PX-Job uses the same source code as PX-Edit

– the default answer to all user interface requests

(e.g. when opening or saving files) is OK

－ PX-Job has some functionalities that are not available in the PX-Edit

interface

－ PX-Job replaces the old PX-EditBatch and PX-Tool applications

Installation

－ Three files are needed for basic use:

– PX-Job.exe main program

– PX-Edit_33.paq program code

– Dyalog150rt_unicode.dll interpreter dll

－ Other installation files, which may be needed are

– Zip.exe, Unzip.exe archive packer and opener

– PX-Edit_main_33.ini main settings file

– language files and other settings or control files

－ PX-Job may be installed simply by copying the necessary files into one

directory

– updating is usually simple: just replace the paq file with a newer one

– Excel functionality needs Excel (or MS Office) to be installed

Command line syntax

PX-Job {job} [in] {out} {err} {copy} {meta} {set} {path} {log} {-} {!}

job job type (default: px)

in source directory, file, file list or list file (mandatory)

out output directory or file (default: source files)

err directory for erroneous files

copy directory for source files

meta metadata file or directory

set settings file

path common directory path

log log file

- options

! switches

Command line

－ The command line consists of the program name [path\]PX-Job[.exe]

and space separated parameter definitions (arguments)

– the parameter ordering is free

– the parameter codes are separated from the definition part
by an equal sign (for example job=csv)

– if the first parameter definition does not have the equal sign, it is
interpreted as a job parameter

– in parameter is always compulsory

job: batch type

px standardized PC-Axis file (default)

csv semicolon separated structured text file

exp eXplorer file

htm html file

sql simplePXsql macro

txt tab separated structured text file

xml CoSSI/XML table

xls Excel file

report database report

split partial table

translate multilingualizer

– If job parameter is missing, and the first argument does not have the

equal sign, it is interpreted as the batch type

– If job cannot be deducted, it is interpreted as job=px

File types

－ For some file types the default output (type, format and character coding)
may be changed with switches (e.g. –o and –t)

－ The default types need no extra switches

– px standard PC-Axis file

– csv semicolon separated text file

– htm html table with no specific colouring

– report semicolon separated csv file

– split px table

– sql all INPUT macros

– txt WinANSI coded tab separated text file

– xls Excel file (xls normally, xlsx for big tables)

– xml CoSSI/XML table: XDF format

Parameters

in: source (mandatory) /1

－ Either source directory, file, list file or comma-separated file list

– if there are spaces or commas in the definition, the parameter must be
given in quotes (")

－ Source directory

– the directory name should end with slash (\ or /)

– as default, only px files are read from the directory
(see options -i and -s)

－ Source file

– the file name may include wildcard characters ? and *

– if the file extension is list (or lst), the file is regarded as a list file

– direct net addresses start with \\

– web addresses start with http:

in: source (mandatory) /2

－ List file

– a list file is a simple text file, which contains file names, one per row

– the lines that start with a semicolon are skipped

(i.e. the file may include comments)

– if all the files are in the same directory, only the first name must contain

the file path

– if all the files have a common path, it will be used with s1 option

－ File list

– the file list consists of comma-separated file names (no spaces allowed)

– if the file names contain commas, the names must given in quotes

– if all the files are in the same directory, only the first name must contain

the file path

in: source (mandatory) /3

in=D:\path\source\ source directory

in=D:/path/source/ ditto

in=D:\path\Source.xls source file

in=D:\path*.xls read all xls files

in=D:\path\Allfiles.list read all list file files

in="D:\pa th\Source.csv" space in the name

in=D:\path1*.px,D:\path2*.csv file list (with wildcards)

in=D:\path\A.px,B.px,C.px file list (in the same directory)

in=D:\path\"A,1.px","B,2.px" file list (commas in names)

in=\\ad.sta.fi\path\File.px direct net address

in=http:\\px.sta.fi\path\File.px web address

out: result

－ Output directory or file

– the directory name should end with backslash

– any non-existent directory will be created (see options -o and –s)

– if there are spaces in the definition, the parameter must be given
in quotes

out=D:\path\Result.px output file

out=D:\path\target\ output directory

out=D:/path/target/ slash is also permitted

－ If out is omitted, the output files are written in the source directories

possibly overwriting existing source files

err: error directory

－ When this setting is in use, the erroneous source files will be copied in

the designated directory (they will not be processed otherwise)

– the directory name should end with a backslash

– any non-existent directory will be created

– if there are spaces in the definition, the parameter must be given in

quotes

– as default, PX-Job is pretty sensitive to all errors with err parameter

• the sensitivity level may be set with option –e

– source files are not deleted automatically

• the expunge switch !x is used for file deleting

copy: archive directory

－ The source files will be copied into the designated directory

– the directory name should end with a backslash

– any non-existent directory will be created

– if there are spaces in the definition, the parameter must be given in

quotes

– if the err parameter is in use, it will be used in erroneous cases

– the source files are not deleted automatically

• the expunge switch !x is used for file deleting

meta: templates and control files

－ Setting of template directory or file

– if there are spaces in the definition, the parameter must be given in

quotes

meta=D:\path\Result.pxk template file

meta=D:\path\templates\ template directory

－ PX-Job will try to find an equivalent metadata source file (px or pxk)

which has the same name as the result file

– with or without trailing or leading parts (separated by underlines)

– name searching is not case sensitive

－ the meta parameter is also used with multilingualizing (job=translate),

reporting (job=report), partial table splitting (job=split) and metadata

injection (–a)

set: settings file

－ Settings file for batch job

– usually PX-Job uses the main settings file in the installation directory
(PX-Edit_main_33.ini), if it is found

– the set parameter may be used for using an additional settings file

(like the personal settings file in PX-Edit)

• it might be suitable e.g. for defining default keywords

– if there are spaces in the definition, the parameter must be given in

quotes

path: common directory path

－ The common path setting for file/directory definitions in the command line

– the file/directory settings that start with a backslash (\)

will be prefixed with the path setting

– if there are spaces in the definition, the parameter must be given in

quotes

– for example, the following input strings will be interpreted similarly:

in=D:\database\input\ out=D:\database\output\

meta=D:\database\template\

in=\input\ out=\output\ meta=\template\

path=D:\database\

in=/input/ out=/output/ meta=/template/

path=D:/database/

log: keeping track

－ The log file is used to record the messages shown during the job (in English)

– all error messages, confirmations, input and output file names, etc.

will be recorded

– if there are spaces in the definition, the parameter must be given in

quotes

– PX-Job will also log the batch start and stop timestamp in the PX-Edit

log (if it is in use)

– the log feature may be switched off with !o

－ The log directory must exist (i.e. it will not be created)

– the default directory is the launch directory

– the default name is px-job_yyyymmdd.log

－ The file extension is log

– if the file exists, the new log messages will be added to the file

Options and switches

Options start with dash,

switches with exclamation mark

－ Options and switches are used to fine-tune the batch

– the options have (usually) multiple alternatives

• the symbols after the options in this document:
?/*/& = one character/ string/ comma-separated list

– the switches have two alternatives (states)

– some of the option values may be given as switches (-s1 = -s = !s)

－ The options and switches may be grouped, but

–g, –i, –j, –l, –n and –v have to be separate

For example
–icsv,txt –o1 –u+2 –r –z !s !x

may be shortened to
-o1ru+2z –icsv,txt !sx

Input

-e?: error sensitivity

－ As default, PX-Job handles all input files

– except those that have fatal errors in them

(e.g. the number of data cells does not equal the metadata)

－ With the err parameter, PX-Job will not tolerate invalid tables,

and all warnings or errors will make the job copy the files in
the err directory

-e1 normal sensitivity level (as without err parameter)

－ Valueless option (-e) or switch (!e) equals to option -e1

-i&: input file types

－ Source file extension definition

– the default input files are px files, but it is possible to give

a comma-separated extension list (do not add spaces)

－ Wildcard characters ? and * are allowed

-ixls only xls files will be read

-ipx,xls both px and xls files

-i* all files in the source directory

-s?: sub-directories

－ As default, only the files in the source directory are handled

－ The –s option is meant for situations, when there is need to go

through the directory structure (starting from the source directory)

-s1 reflect the directory structure in output, too

-s2 write the output files in the output directory only

(no sub-directories)

－ Valueless option (-s) or switch (!s) equals to option -s1

-y*: freshness filtering

－y filters input files based on age in days (“youngness”)

－ The definition format is dd.hh.min

-y14 not older than two weeks old files are read

-y0.2 not older than two hours old files are read

-y0.0.15 not older than fifteen minutes old files are read

－ The extended format makes it possible to set the time window:
dd.hh.min+dd.hh.min

-y2+10 not newer than ten minutes and older than two days

-y2+1.0 not newer than one hour and older than two days

-y2+1.0.0 not newer than one day and older than two days

-y0+10 not newer than ten minutes

Input switches

!a try to open all Excel worksheets

– usable e.g. for joining tables

– all sheets will have the sheet number at the end of the output file

name (except the first sheet)

!b bypass the default input string conversion (DOS > Unicode)

!d remove variables with only one value

!i show job progress information in the Task Bar balloon

Metadata

-a: add and manage metadata

－ Metadata for almost all the keywords (table, variable value or cell specific)

can be added, updated or removed with a control csv file (given with the
meta parameter) and –a option

– the keywords CODES, DATA, HIERARCHIES, HIERARCHYNAMES,

KEYS, LANGUAGES, PARTITIONED and VALUES are not

manageable, though

– the keyword contents are lightly checked (not as thoroughly as in px

file reading)

– the control texts are not case-sensitive

– -a option is not needed with the job=px setting (the file extension

csv is enough)

－ It is also possible to pivot the table (change the variable order), and

change any variable, value text or value code

-a: the control file

－ The first row of the file contains the column headers

<keyword> valid px keyword name (STUB and HEADING are special)

languagecode specific language code

variablename variable name for variable and value specific keywords

valuetext value text (or code) for value specific keywords

code value code for value specific keywords

<variable> variable names (for cell specific keywords)

replacetext the text string to be replaced (if needed)

filename the file name or mask (if needed)

－ The column order is free

－ Every row is regarded as a separate update instruction (either add, change

or delete command) and there may be several same level keywords

－ Empty cells are not handled

-a: keyword columns

－ <keyword>

– contains the new contents for the keyword
or the text string, which replaces the replacetext string

– tilde (~) removes the keyword (not a mandatory one, though)

– a new keyword will be added, but replacing an existing one needs to
have the –r option as well

– TIMEVAL is treated differently: only the format of the new contents is

taken in account, the final keyword will be based on the target variable

– the footnote keywords can be copied to another same-level footnote

(e.g. NOTEX to NOTE)

– VALUENOTEs may be expanded to CELLNOTEs

– VALUES may be copied to CODES

-a: language and variable columns

－ languagecode

– the language code for the row (empty ➾ all table languages)

– if the code = the main language of the table, the keyword will also

be set to all other table languages (if they are not set separately)

－ variablename

– mandatory for variable and value specific keywords

– the variable name may be either in the defined language
(defined by languagecode) or in the main language

－ <variable>

– mandatory for cell specific keywords

– either value text in the defined or main language, value code,
or * (= all)

-a: value and code columns

－ valuetext

– valuetext or code is mandatory for value specific keywords

– either value text in the defined language or in the main language
or value code (preferably code should be used for this)

－ code

– value code for value specific keywords

-a: replace and file filtering columns

－ replacetext

– the text string, which is to be replaced

(i.e. the keyword cell contains always the new contents)

– may contain wildcard characters * and ?

– search is case-insensitive

– will bypass the possible –r option

－ filename

– table file name

– the px extension is not needed

– wildcard characters * and ? are accepted

– may contain (part of the) database path

-a: changing variable order

－ STUB

– comma-separated variable list

• if the variable name contains commas, it must be enclosed in quotes

– if there is no HEADING column and all the given variables exist in the

table, they will be set as the row variables, and the others as the column

variables

– if there is a HEADING column, and the table has the same variables,

the table will be pivoted according to the STUB, HEADING setting

－ HEADING

– works like STUB but for column variables

-a: possible column combinations /1

－ <keyword> {<keyword>, …} {replacetext} {languagecode} {filename}

– table specific keyword injection

－ <keyword> {<keyword>, …} {variablename} {replacetext}

{languagecode} {filename}

– variable specific keyword injection

－ <keyword> {<keyword>, …} {variablename} {valuetext} {replacetext}

{languagecode} {filename}

－ <keyword> {<keyword>, …} {variablename} {code} {replacetext}

{languagecode} {filename}

– value specific keyword injection

－ <keyword> {<keyword>, …} <variable> {<variable>, …} {replacetext}

{languagecode} {filename}

– cell specific keyword injection

-a: possible column combinations /2

－ STUB {languagecode} {filename}

－ HEADING {languagecode} {filename}

– setting row or column variables

－ STUB HEADING{languagecode} {filename}

– table pivoting

－ variablename replacetext {languagecode} {filename}

– change variable (from replacetext)

－ variablename valuename replacetext {languagecode} {filename}

－ variablename valuename code {languagecode} {filename}

– change value text from replacetext or according to code

－ variablename code replacetext {languagecode} {filename}

－ variablename code valuename {languagecode} {filename}

– change code from replacetext or according to valuename

-g&: group variables for combining

－ The grouped variables will be joined as a new variable

－ The variable name may be set with the –v option or it will be combined

from the grouped variable

－ The variable values and codes will be combined with the separator, which
may be set with the –p option (the default is slash /)

– the variable names are given in the main table language as a comma-

separated list (the names cannot thus contain commas)

– the TIMEVAL keyword will be fixed, if possible (see !t switch)

-gYear,Month variables to be combined

-g"First name","Old name" quotes needed for the spaces

-gHEADING combine all column variables

-gSTUB combine all row variables

-h?: Statistics Finland specific

－ Most of these are reserved for Statistic Finland’s internal use, relying

upon the database structure, table file names and some specific

metadata settings

-h0 generate MATRIX keywords based on the table file name

-h1 standardize CONTACT keywords (e.g. new phone numbers)

-h2 -"- for Maaseutuindikaattorit database

-h3 -"- for Kaupunki-indikaattorit database

-h4 TABLEID batch (meta-csv: table, contents)

-h5 VARIABLE-ID batch (meta-csv: table, variable, contents)

-h6 key figures setting (variable order: Alue, Tiedot, Vuosi)

-h7 variable-value listings

-h8 eXist update csv

-h25 search interesting data values in the database (default value is

25, may be changed with –v option), the result is a csv file

-m?: default metadata

－ The default keywords are read from the [Default]section in the

main settings file

– default metadata will be added after any other metadata operations

-m1 copy the missing metadata

-m2 replace all possible metadata

－ Valueless option (-m) or switch (!m) equals to option -m1

-n&: new variable

－ The syntax: –nVariable;value

– the single value may be either a given value or keyword contents

– if value is missing, the file name will be used instead

– the file name is without path and extension, underlines are converted to

spaces

– the names may be given for multilingual tables as comma-separated list

(the language order must be standardized)

– the names cannot have commas or semicolons

-nInformation new variable name Information

-n"New variable" quotes needed for the spaces

-nNew;CONTENTS the value text comes from the keyword

-nTieto,Information;arvo,value bilingual settings

-p*: partition string

－ The separator used in variable combining (see the –g option)

－ The default separator is a slash (/)

-p- use dash

-p:: use two colons

-p" = " quotes needed for the spaces

-r?: replace metadata

－ Used only with the meta parameter

-r0 add all possible metadata (default)

-r1 add and replace all possible metadata

-r2 add all possible metadata and replace variable names

(if there are the same number of names)

-r3 add and replace all possible metadata and replace

variable names, values and codes (use with caution!)

－ Valueless option (-r) or switch (!r) equals to option -r1

-u*: update timestamp

－ Add the LAST-UPDATED keyword

-u0 use the current date (i.e. when the batch is run)

-u20130713 set the date (use the default time)

-u20130713_13:30 set the full timestamp

-u+2 set the date two days later

• if the date would be weekend, it will be changed to the next weekday

• as default, the weekend is regarded as Saturday and Sunday (see –w)

• the default time is usually defined in the main settings file

-u+2_09:00 set the date and time in future

－ Valueless option (-u) or switch (!u) equals to option -u0

-v*: variable names

－ As default, the combined variable name will be made from the grouped
variable names using the combine separator (see the –g and –p options)

-vTime set the new variable name as Time

-vTime,Tid,Aika set the new names for multilingual table

(in the language order)

-v"New name" quotes needed for the spaces

-w*: weekend skipping/ first column width

－ Defining the non-Western weekend (along with option -u)

– the default weekend is regarded as Saturday and Sunday

– needed, if there is need to change the weekend days or just bypass
the default weekend skipping with the option –u

– the weekday numbering: 0 (Monday) … 6 (Sunday)

-w45 set weekend as Friday and Saturday

-w7 no weekend skipping

－ For html output, the option may be used for defining the first column

width in pixels

-w200 200 pixel wide column

-x?: title fine-tuning

－ For px job, the TITLE will always be set according to the PC-Axis rules

－ For other output types, the TITLE may be created from CONTENTS or

DESCRIPTION without the variable names

-x1 set TITLE as CONTENTS

-x2 set TITLE as DESCRIPTION

(or CONTENTS, if DESCRIPTION is not found)

Database report

job=report: database reports /1

－ The database report result is a csv file

－ The following column headers are used:

<keyword> contents of the specified keyword

filecreate file creation timestamp

filename file name

filepath the directory path of the file

filesize file size in bytes

fileupdate file change timestamp

languagecode the language codes in the table

pathname file path and name combined

tablesize table size (rows)x(columns)=figures

job=report: database reports /2

－ The following headers cause the report process read the data part,

which may slow down the process remarkably

datacells total number of data cells

datanumbers total number of figures

datazeroes total number of zeroes

datadashes total number of dash codes

datadotcodes total number of dot codes

datadots1..7 total number of corresponding dot codes

datamin the minimum data value

datamax the maximum data value

datamean the average data value

－ If the headers have the percent sign at the end (e.g. datadotcodes%),

its value will be the percentage calculated with the total number of cells

report: general

－ If there is no control csv file, the report includes the columns filepath,

filename, filesize, fileupdate, tablesize, languagecode,

VARIABLES and all mandatory keywords

－ The VARIABLES column contains all the variables in the table

(from STUB and HEADING keywords)

－ The keywords CODES, HEADING, KEYS, STUB and VALUES

cannot be included in the report

－ The !f switch will print all the requested file information in the report even

though there is no filtering information found (see the control csv structure)

－ The controls are not case sensitive

report: the control file /1

－ The report contents may be tuned by a controlling csv file, which is given
with meta parameter; the file may be created in PX-Edit

(Edit|Database|Report)

－ The first column is a control code, which is either 0 (general) or 1..4 (the

keyword level: table, variable, value or cell specific keyword accordingly)

－ The second column contains the control words or keywords

－ The general controls are either for information (filename, filecreate, …)

or filtering (languagecode, variable, value or content)

－ languagecode may be alone (all the table languages) or it may be used for

filtering the needed languages (language codes in separate columns)

– each language will add a new line in the report

0;languagecode all languages

0;languagecode;en;sv only English and Swedish metadata

report: the control file /2

－ variable may be alone (equals to all table variables) or it may be used

for filtering the needed variables (variable names in separate columns)

– each variable will add a new line in the report

－ The variable names can be either in specified or main language

0;variable all variables (each in different line)

0;variable;alue;region filtering of the listed variables

1;VARIABLES all variable names in a single cell

－ value defines the filtering value texts or codes

– the value names can be either in specified or main language

0;value;helsinki;091

report: the control file /3

－ content defines the keyword content filtering (it does not need to be the

whole text) for all keywords

0;content;Tilastokesk;Statist

－ It is possible to define the filtering values for each keyword separately

1;DESCRIPTION;kala;fisk;fish

－ The report creating will be permissive, i.e. if an individual keyword is filtered

(and the corresponding cell left empty), other keyword values may still add

a new line in the report

Table joining

-j&: table joining

－ The joining option has to be separate

－ When this option is in use, all the input files will be opened and grouped,

and each group is joined to the first table

(the only criteria: the same number of variables)

– corresponds to Edit|Join function with multiple tables in PX-Edit

－ The plain -j option joins the tables with default values

– this special case may be denoted by switch !j

－ The -jn option tries to join single language tables to multilingual ones

– the file names should end with underline and the language code, such
as Example_en.px and Example_fi.px, but the main language file

may lack the postfix

– with –j1..4 options the file names may have 1 to 4 denoting

characters at the end, like ExampleEN.px and ExampleFI.px for –j2

-j&: join options

－ These joining options are closely related to the PX-Edit Join window

-ja replace all metadata (default: only missing ones)

-jb merge new values with old values after joining

-jc do not use codes when matching values

-je exact value text or code match with values

-jf bypass fill items

-jl do not create multilingual files, if possible

-jm do not try to match the variable names

-jn group the tables by file name without the last name part

-jo use only original values

-jr do not replace any metadata

-js do not try to match values

-jt replace value texts

-j1..4 group the file names without the last 1 to 4 characters

－ There may be several settings in use at the same time (-jmo)

Table splitting

split: the control file /1

－ The splitting functionality needs a controlling csv file, which is given with
meta parameter

－ The first row contains the column headers

STUB row variable name (mandatory)

HEADING column variable name (mandatory)

languagecode specific language code (default: base language)

takevalues number of values taken from the variable list

(if negative, from the end)

skipvalue value texts or codes which will not be in the result

withvalue value text (if not given, all the values are selected)

split: the control file /2

－ The variable and value names are case insensitive without ending blanks

－ Variable order will be the same as in the control file, extra variables will be

put in row variables

－ The value texts may contain value codes as well

－ Empty column code is interpreted as withvalue

File saving

-b*: bypass naming standards

－ Fine tuning of the file names

-b_ spaces will not be converted to underscores

-b= uppercase characters will not be converted to lowercase

-b~ accented characters will not be converted to ascii

－ Multiple settings may be defined, if needed (-b~_=)

－ For reporting

-b/ sets the file path separator as slash

-c?: character conversion

－ Set the character conversion for text and px files

-c0 WinANSI (default)

-c1 Unicode (UTF-8)

-c2 ISO-8859

-c10 WinANSI, missing CHARSET is interpreted as DOS coding

-c11 Unicode (- “ -)

-c12 ISO-8859 (- “ -)

-c20 WinANSI, the CODEPAGE setting is ignored

-c21 Unicode (- “ -)

-c22 ISO-8859 (- “ -)

－ It is still possible to read the old DOS-ANSI formatted PC-Axis files,

but DOS saving format is not supported

－ Valueless option (-c) or switch (!c) equals to option -c1

-d*: dash conversion

－ The dash characters (not for px file) may be converted to dot codes or zero

-d0 change dashes to zeroes

-f*: fill item

－ The fill item may be any dot code or zero

－ The default value will be read from the main settings file (default: ..)

-f... set fill item as three dots

-k?: create new codes

－ Empty code lists will be replaced

-k1 use the corresponding value texts of the main language

• if there are unique space separated prefixes in all the value texts,

they will be used

-k2 use only the corresponding value texts

-k3 create sequential zero-padded numeric codes

• if all the corresponding values are numeric, they will be used

-k4 create only sequential zero-padded numeric codes

－ Code lists containing empty codes will be patched with new codes
using options –k11 to –k14

－ Code lists containing empty codes will be replaced with new codes
using options –k21 to –k24

-l&: languages /1

－ The language option is used either for defining the languages for the output
tables or the languages to be added when using the meta parameter

– the first language in the list becomes the main language, which will

e.g. define the possible character conversions

– the languages will be added, if there are suitable metadata in the source

– the option makes PX-Job read all the available language files

-len use only English in the output file (if found),

if there is no LANGUAGE keyword, it will be set as LANGUAGE="en";

-lfi,sv,en the output tables will have Finnish (main language),

Swedish and English (if possible)

-l&: languages /2

－ Valueless option (–l) makes PX-Job read the language files

– the txt strings needed for TITLE creation are included in PX-Job for
languages da, en, es, fi, fr, it, kl, no , pt, ru, sl, sv and uk

－ The underline character in the language list (e.g. –l_fi,en) makes PX-Job

read the language codes from the file names where the code is the last part

of the name and separated by the underscore character (e.g.
table_en.xlsx)

－ The plus character in the language list (e.g. –l+) makes PX-Job save the

language code in the second cell after the header for the structured files
(csv, txt and xls)

-o?: output type /1

－ px -o1 metadata part of the table (pxk)

-o2 sparse matrix format

－ csv -o1 tab as field separator

-o2 comma as field separator

-o3 create metadata-csv (verbose)

-o4 create metadata-csv (all metadata)

-o5 tab as field separator, file extension is xls (see !q)

-o6 all variables in rows (semicolon separated)

－ htm -o1 coloured cell backgrounds

－ report -o1 tab as field separator

-o1 comma as field separator

－ translate

-o1 separate files, language code at the end of each file name

-o?: output type /2

－ split -o1 csv

-o2 xls

-o3 htm

-o4 htm, coloured cell backgrounds

－ sql -o1 only metadata INSERT macros

-o2 only data INSERT macros

-o3 bulk saving (data part in csv format)

-o4 DROP, CREATE and all INSERT macros

-o5 DROP, CREATE and metadata INSERT macros

－ xls -o1 tables in xlsx format

－ xml -o1 tables in XML/Cals format

-o2 tables in XML/Keys format

-q*: decimal and thousand qualifiers

－ Formatting is used in XML/Cals saving only (except -q,)

-q, comma for decimals, no thousand separator

this may be used in txt and csv outputs as well

-q,. comma for decimals, dot for thousands

-q., dot for decimals, comma for thousands

-q,_ comma for decimals, space for thousands

-q_ dot for decimals, space for thousands

-q,~ comma for decimals, non-breaking space for thousands

-q~ dot for decimals, non-breaking space for thousands

-q,' comma for decimals, apostrophe for thousands

-q' dot for decimals, apostrophe for thousands

-t*: variable titles /1

－ Effects only csv, htm, xls and xls output

– hierarchically arranged:

-t0 texts only

-t1 codes only

-t2 codes and texts combined

-t3 codes and texts separated

– all values:

-t10 texts only

-t11 codes only

-t12 codes and texts combined

-t13 codes and texts separated

-t*: variable titles /2

－ Effects only htm output

– hierarchically arranged, px-style title column:

-t20 texts only

-t21 codes only

-t22 codes and texts combined

– hierarchically arranged, px-style title column, last variable in columns:

-t30 texts only

-t31 codes only

-t32 codes and texts combined

-z?: zip files to archives

－ The separate zip.exe program is needed (included in the setup package)

－ The archiving type depends on the out parameter

– file: all files will be zipped in it

–s option copies the directory structure within the output file

– directory: all output will be copied in individual archives

–s option copies the directory structure within the output directory

－ If there is no out parameter, the files will be packed in the source directory

-z2 option packs files in each directory in files (name = the directory)

-z3 option works as z2, but the file names contain the directory paths

(backslashes are replaced by underscores)

－ Valueless option (-z) or switch (!z) equals to option -z1

Saving switches /1

!f print the file information always in the report (bypassing filtering)

– forces handling all the files in metadata injection (-a)

– changes dot codes to zeroes in text file output (csv, htm and txt)

!g add a single language code at the end of the file name

!h database publishing pipeline settings in Statistics Finland

!k keep the file change date

!l use system language for character conversion

!n add footnotes in the output table (csv, htm, xls)

!o do not write the log file

!p save using the screen decimal precision (not for px files)

Saving switches /2

!q quick copying of data part from source file (in px job)

save the file with both csv and xls extensions (in csv job with -o5)

!t try to set the TIMEVAL when combining variables

!v file replace validation

– only with px job and out directory parameter, no join or zipping defined

– checks that there is no newer output file present in the output directory

!w copy other than px files to the output directory

– only with different out and in directories

!x delete (expunge) the source file(s) (use with caution!)

!y save changed tables only

Metadata editing

There are many ways to manage metadata

－ Keyword fetching from template files

– prepared px or pxk file is needed

– the file does not have to be perfect, PX-Edit has to be able to open it

PX-Job in=… out=… meta=Template.pxk …

－ Adding default keyword values from the settings file

– prepared settings file is needed (with [Defaults]section)

– useful in quick patches (for example setting CONTACT keyword)

PX-Job in=… out=… set=Myset.ini –m …

－ Metadata injection with control csv files

– separate csv files needed (creating is easy, e.g. with PX-Job or Excel)

– versatile

PX-Job in=… out=… meta=Control.csv –a …

Simple multilingualizing

translate: multilingualizing

－ Creating the translation files (no meta parameter):

PX-Job translate in=D:\dbase\ out=D:\lang\ –s2

creates translate files from each px file in the database

－ The translation files contain (most of the) multilingual keywords

– every keyword defines its own block (in brackets)

– the texts inside the sections should be translated, and

the language code set accordingly

– the file may contain several language blocks

－ Multilingualizing

– the meta parameter defines the translation files/directory

PX-Job translate in=D:\dbase\ meta=D:\lang\ out=D:\outp\ –s

multilingualizes those px files in the database, for which the corresponding

translation file is found

Examples

Database actions

PX-Job in=d:\dbase\ –s log=d:\log\Check.log

– read all px files in the database d:\dbase\ (sub-directories, too),

validate them and save back, write all actions in the log file

PX-Job in=d:/dbase/ –sy7 log=d:/log/Check

– as before, but read only files, which are no older than one week

PX-Job csv in=d:\dbase\ out=d:\csvt\ -sc1 log=d:\log\Csv

– convert all px files in the database d:\dbase as Unicode (UTF-8) csv-

tables (according to the main language) to the directory d:\csvt

PX-Job csv in=d:\dbase\ out=d:\csvt\ -sc1 -lsv log=d:\log\Csv

– as before, but now the metadata will be in Swedish (if there is
sv language setting in the table) or in the table main language

Metadata enriching

PX-Job in=d:\input\ meta=d:\template\ log=d:\log\Fetch

– read px files from the directory d:\input\

– fetch possible new metadata for each file from the directory
d:\template according to the table name

– save the result files in the source directory (no out= parameter)

PX-Job in=d:\input\ meta=d:\template\ -r log=d:\log\Fetch

– as before, but now all possible keywords will be copied

PX-Job in=d:\input\ set=d:\Batch.ini –ms log=d:\log\Set

– add to all px files in the database d:\dbase (with sub-directories) the

new default keywords from the [Defaults]section in the settings file

d:\Batch.ini

PX-Job in=d:\input\ set=d:\Batch.ini –m2s log=d:\log\Set

– as before, but now the existing values will be replaced as well

Metadata injection: table specific keywords /1

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_tbl1 -as …

– read the control file and add new keywords for each language in the
database d:\dbase (sub-directories included)

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_tbl1 -asr …

– as before, but now the keywords will be added or replaced

－ The file structure is now as follows (Ctrl_tbl1.csv):

Metadata injection: table specific keywords /2

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_tbl2 -as …

– the command is similar to the previous one

－ The control file (Ctrl_tbl2.csv) contains several control rows:

– set the NOTE-keyword for files, the name of which starts with 0?0

– remove existing PRESTEXT keywords (headers are not case sensitive)

– replace text area to municipality in the keywords DESCRIPTION

and CONTENTS

Metadata injection: variable specific keywords

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_var –as …

－ The control file (Ctrl_var.csv) :

– set the NOTE keyword for variables of different languages

– set the TIMEVAL keyword for the variable vuosi (A equals to TLIST(A))

• works for multilingual tables, if the main language is Finnish

and the name of the variable is vuosi, Vuosi, VUOSI, etc.

Metadata injection: value specific keywords

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_val –as …

－ The control file (Ctrl_val.csv) :

– set the VALUENOTE keyword for values

• value Suomi in variable Valtio (all languages, Finnish as base language)

• value Finland in variable Country (in English)

• value code 529 (for Naantali town) in variable Region (in Swedish)

Metadata injection: cell specific keywords

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_cell –as …

－ The control file (Ctrl_cell.csv) :

– set the CELLNOTE keyword

• the table must have the variables Industry, Indices, Month and Year

(or some subset of them)

• the setting will touch all values (*) for the variable Indices, and the

defined values for other variables (if found)

Metadata injection: different levels in same csv

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_comb –as …

－ The control file (Ctrl_comb.csv) :

– a small combination of the previous control files

– PX-Job tries to deduct the preferred injection based on non-empty cells
of individual rows

Metadata injection: replacing text

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_repl –as …

－ The control file (Ctrl_repl.csv) :

– first line: replace text “contry” to “Country” in the NOTE keyword

– second line: replace text “comments#” to “Comments :” for

CELLNOTEs for year 2000 and France

– third line: replace text “comments#” to “Comments: “ for all

CELLNOTEs

– fourth line: expand the VALUENOTE for Finland to CELLNOTEs

– fifth line: delete the VALUENOTE for Finland

Table pivoting

PX-Job in=d:\dbase\ meta=d:\control\Ctrl_set –as …

－ The control file (Ctrl_set.csv) :

– pivot the table with variables Year, Region and Age

– move the variable Gender to row variable (others to columns)

– move the variables Region and NACE, 2008 as column variables

Table splitting

PX-Job split in=d:\dbase\ meta=d:\control\Ctrl_spl –s …

－ The control file (Ctrl_spl.csv) :

– the variable Region will have three named values in this order in rows

– the variable Industry will have all its values in rows

– the variable Year will have the five last values in columns

– the table must have at least one of these variables

– other possible variables will be in rows

Table joining

PX-Job in=d:\dbase\Tseries.px,"d:\in\Monthly upd.xlsx" –j …

– add data for a new month to the time series from a structured Excel table

– the Excel file name has to be in quotes because of the space in the name

– the original table has to be the first in the list

PX-Job in=d:\input\Provinces.xlsx out=d:\result\Package

meta=d:\template\Mk.pxk !ajz

– open all worksheets of the Excel file (they have to be structured): !a

– join the tables: !j

– add suitable metadata from the template file: meta=

– save the zipped (!z) result (Provinces.px) as Package.zip

Miscellaneous /1

PX-Job report in=d:\dbase\ out=d:\reports\ -s

– make a default database report and save it in the output directory as
px-report_timestamp.csv

PX-Job in=d:\dbase\deaths\ out=d:\result\Co_deaths.px

"-nCause of death" !j

– add a new variable Cause of death in the tables (NB: quotes),

the value texts will be taken from the file names: -n

– join the tables (with the same number of variables): !j

– save the result table as Co_deaths.px

PX-Job in=d:\spain\ –les -s

– if needed, add the LANGUAGE keyword as Spanish, and create

the TITLE keywords, too

Miscellaneous /2

PX-Job in=d:\dbase\ -gYear,Period -vTime –s !t

– combine (group) variables Year and Period as a variable Time in each

table in the database where such variables are found

– try to set a suitable TIMEVAL expression for the combined variable

– if it succeeds, the variable codes are set according to the new TIMEVAL

PX-Job in=d:\olddb\ out=d:\newdb -jn –s –lfi,sv,en

– join monolingual tables in the database olddb as multilingual ones in the

language order Finnish, Swedish and English to new location newdb with

sub-directories

– the monolingual file names should have the language code as separate

postfix (the main language files can lack the code)
e.g. Table1_fi.px, Table1_sv.px, Table1_en.px, Table2.px,

Table2_sw.px, Table2_en.px, …

