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Abstract  
 

Statistics Finland has abandoned a standard Griliches-type time-dummy hedonic approach in the beginning of 

2000 for several reasons. First of all, the quality adjustment is not easily interpretable, which is essential in 

practical index number compilation. Secondly, the empirical results show that aggregation method has 

consistency problems and may cause severe bias for price change estimates. Finally, it is not rooted in the 

traditional index number theory. To overcome these problems, Statistics Finland developed two new hedonic 

approaches - first for old blocks of flats and terraced houses and then for rents of office and shop premises. 

Both analyses are based on well-known decomposition introduced in Oaxaca (1973). Statistics Finland was the 

first to apply this decomposition in the hedonic price index compilation. The idea is to explicitly decompose the 

average price changes into quality correction and quality adjusted price change components, both for 

unweighted geometric average and weighted arithmetic average cases. 

 

In this study, we provide a synthesis of these two hedonic techniques by discussing transparent economic, 

mathematical and statistical explanations for the used methods. The process of index compilation is not 

straightforward and requires economic thinking in producing regional partition of transactions, statistical 

inference by using the fixed effects model, and finally, the entire process relies on standard index number 

theory in the price aggregation step. We aim at providing an accessible blueprint and explanation of the 

methods for official statistics practitioners. The empirical tests rely on high-quality quarterly level register on 

transactions containing prices, quantities, values and basic quality characteristics from 2015/I-2020/IV. 
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1 Introduction 
 

The traditional index number theory is based on bilateral price-links where price changes are measured from 

comparable commodities. In this spirit Bailey, Muth and Nourse (1963) develop a repeat-sales model (see, Case 

and Shiller,1989; Quigley, 1995) using a model based (or the stochastic) approach to index numbers in which 

uncertainty and statistical ideas play a central role. These repeat-sales models are problematic, because they can 

only capture a tiny fraction of the data in Finland because each transacted dwelling appears rarely more than 

once in the data in a short time span.  

 

Another well-known model-based approach is Griliches (1973) time-dummy hedonic method, which is able to 

cover the entire data by resolving the comparability issue by applying quality adjusting. The method uses 

standard regression analysis and in statistical point of view the method seems simple and understandable. 

Unfortunately, the method suffers from several problems in index number calculations. First, the analysis of 

quality correction is not transparently presented, so that the quality adjusted price changes are difficult to 

interpret. Second, the method agrees with the index number theory only in very specific conditions. Third, the 

price change estimates of the Griliches-type model (see for example WTPD-model, Diewert and Fox, 2018, 

pp.15) may include also some quantity change caused by asymmetric weighting, leading to serious biases in 

some situations (see Suoperä, Nieminen, Montonen and Markkanen, 2021, pp. 12-14). Fourth, applications for 

several aggregation levels are problematic and probably impossible to apply consistently.  

 

This work builds on two earlier papers (Koev, 2003; Suoperä, 2006; see also Vartia, Suoperä & Vuorio, 2021; 

Suoperä & Auno, 2021) which address most of above issues based on hedonic approach to index numbers. The 

main idea is, that because effective matched pairs method or bilateral price-linking is not possible, the price-

linking should be done for some, coarse but homogeneous, grouping of observations. In statistical terms, this 

means partitioning of observations into strata, which in the case of house prices, is naturally based on regional 

classification. Unfortunately, observations in strata are not comparable in quality over time and the quality 

adjusting remains a problem in stratum level aggregates - whatever they are. According Koev (2003) and 

Suoperä (2006), a solution to the problem is two-fold: First, the partition is combined with regression analysis 

into well-known Fixed Effect model (Hsiao, 1986, s.29-32) and second, the quality adjusting is performed 

using decomposition introduced by Oaxaca (1973). Now, instead of bilateral price-linking of observations, we 

may make price-linking for some stratum aggregate, say, for example for unweighted geometric average or for 

weighted arithmetic average. The decomposition split the true average price change consistently into two parts: 

quality change(s) and quality adjusted price changes for any stratum in question. The decomposition makes it 

possible to apply index number theory for stratum level aggregates of the decomposition similarly as in 

traditional number theory. We analyze two stratum aggregates and their decompositions – traditional 

unweighted geometric average and rarely used weighted arithmetic average – and apply classical index number 

theory to them. All analyses are done using logarithmic representations. Practically, we follow Koev (2003); 

Suoperä (2006); Suoperä, Nieminen, Montonen and Markkanen (2021); Vartia, Suoperä & Vuorio (2021) and 

Suoperä & Auno (2021) and pick up the most suitable methods to construct hedonic price index numbers for 

block of flats and terraced houses in Finland. We perform our analysis of index numbers using several basic 

(Laspeyres (L), log-Laspeyres (l), Log-Paasche (p), Paasche (P)) and excellent index number formulas 

(Törnqvist (T), Montgomery-Vartia (MV), Sato-Vartia (SV), Fisher (F)). 

 

The structure of the study is as follows. In chapter 2 we present the data, basic concepts and notations. In 

chapter 3 we present two nested partitions and combine them with heterogeneously behaving cross-sectional 

regressions. In chapter 4 we derive stratum aggregates and their Oaxaca decompositions.  In chapter 5 we apply 

index number methods to our stratum aggregates and chapter 6 concludes. 

 



 

 

2 Data, Basic Concepts and Notation 

2.1 Data 
 

Our data is derived from a register maintained by the tax authority. It covers all transactions of dwellings for 

blocks of flats and terraced houses in Finland. Statistics Finland have applied further treatment to the data by 

merging dwelling specific information (i.e., quality characteristics) from other registers. In this study we 

analyze the data quarterly from 2015/I to 2020/IV. The data includes about 17 000 and 35 000 transactions for 

terraced houses and for blocks of flats respectively. Both dwelling-types are analyzed separately. 

 

 

2.2 Basic Concepts 
 

Price is defined as dwelling specific unit value measuring price per square meter of a dwelling. In this study, 

the unit prices are in logarithmic scale. All other variables are measured by their typical units of measurement - 

size of dwelling in square meters, distance of dwelling from center of municipal services in minutes and age of 

dwelling in years. In short, this means that our price model is specified as semilogarithmic. 

 

 

2.3 Notation 
 

The notations in this study are two-fold. First, in observation level we use typical econometric notation, 

because we use model-based price analysis. Aggregation of variables (i.e., dependent and independent) from 

observations into strata (i.e., into index commodities or stratum aggregates) connect notations also into 

traditional notations of index number theory. The most important concepts are: 

 

Observation level: 

Commodities: 𝑎1, 𝑎2, … , 𝑎𝑛𝑡
 are transacted dwellings in period t (blocks of flats or terraced houses).  

Time periods: t = 0, 1, 2, … are the compared quarters.  

Quantity: 𝑞𝑖
𝑡 = 𝑞𝑖𝑡   is the size of dwelling of 𝑎𝑖  as square meters in period t. 

Unit value or unit price: 𝑝𝑖
𝑡 = 𝑣𝑖

𝑡 𝑞𝑖
𝑡⁄  or  𝑝𝑖𝑡 = 𝑣𝑖𝑡 𝑞𝑖𝑡⁄  is the price of dwelling 𝑎𝑖  per square meter in period t 

Value: 𝑣𝑖
𝑡 = 𝑣𝑖𝑡 = 𝑞𝑖𝑡𝑝𝑖𝑡  is the value of dwelling 𝑎𝑖  in period t. 

Total value: 𝑉𝑡 = ∑ 𝑣𝑖
𝑡

𝑖 = ∑ 𝑣𝑖𝑡𝑖  is the total value of all dwellings in period t. 

Total quantity: 𝑄𝑡 = ∑ 𝑞𝑖
𝑡

𝑖 = ∑ 𝑞𝑖𝑡𝑖  is the total quantity of all dwellings in period t. 

Explanatory variables in regressions: 𝒙𝑖𝑡 = (𝑥𝑖𝑡1 … 𝑥𝑖𝑡𝑘)′ is a k-vector of observed characteristics in period t. 

 

Stratum level (i.e., elementary aggregates, for example conditional averages): 

Price relatives: �̅�𝑘
𝑡/0

= �̅�𝑘𝑡 �̅�𝑘0⁄  is the price relative of averaged unit prices for stratum k from period 0 to t. 

Quantity relatives: 𝑞𝑘
𝑡/0

= 𝑞𝑘𝑡 𝑞𝑘0⁄  is the quantity relative for stratum k from period 0 to t. 

Value relatives: 𝑣𝑘
𝑡/0

= 𝑣𝑘𝑡 𝑣𝑘0⁄  is the value relative for stratum k from period 0 to t. 

Value shares: 𝑤𝑘𝑡 = 𝑣𝑘𝑡 ∑ 𝑣𝑘𝑡𝑘⁄  is the value share for stratum k in period t. 

Explanatory variables in regressions: �̅�𝑘𝑡 = (�̅�𝑡1 … �̅�𝑡𝑘)′ is a k-vector of averaged characteristics for stratum k 

in period t. 

 

The averaged variables will be defined more specifically when different aggregation rules are used. 

 

 

3 The Regression Analysis Stage 
 

When traditional price-linking (i.e., methods of bilateral price-links and repeat-sales model or matched pairs) is 

not available for commodities comparable in quality a partition of statistical units is necessary. Partition means 

for most statisticians classification of statistical units into most ‘homogenous’ disjoint stratums. For theorists, 

this may seem as ‘a piece of cake’, but in empirical analyzes definition of partition is very complicated – 



 

 

homogeneous groupings is not easy to come by and may cause serious problems when price change estimates 

are calculated for stratums using a stochastic approach. In this study we test two competing partitions that are 

both based on regions and room numbers. The second partition is much more detailed than the first one, besides 

regions and sub-areas it includes the most important postal code areas and smaller municipalities. Similarly, as 

in our earlier studies (Suoperä and Auno, 2021; Suoperä, Nieminen, Montonen and Markkanen, 2021), 

regression analysis combined with partition may lead to price change estimates for stratums (i.e., commodity 

groups) that are severely biased. 

 

We proceed similarly as in Suoperä and Vartia (2011) – in first stage we make partitions of transacted 

dwellings and then apply regression analysis in each partition. These two stages are closely related and here we 

combine them into fixed-effects dummy-variable approach (Hsiao, 1986, s.29-32). We show that regression 

analysis combined with the partition is operational especially in construction of hedonic index numbers (Koev, 

2003; Suoperä, 2003, 2004, 2007, 2009, 2010). 

 

 

3.1 Partition of Transacted Dwellings 
 

We define separate partitions for block of flats and terraced houses. Transacted dwellings 

 n321 a,...,a,a,a A =   are stratified into strata  Ak where sub-index k = 1,...,K represents the stratum. 

Subpopulations  Ak of dwellings are separate and exclude each other, that is, =kk A A   ,  kk    and A 

= 
K

k

kA
1=

. This is the simplest mathematical definition of partition. Its empirical counterpart follows Koev 

(2003, Appendix, Regional stratification, p. 54). Location, type of building and number of rooms are the most 

fundamental characteristics of the dwelling and prices vary according to these characteristics the most (Koev, 

2003, p.21). Location of dwellings are based on regional stratification and within each region the dwellings are 

divided by type and number of rooms as follows: 

 

Apartments in blocks of flats Apartments in terraced houses 

 

1 room 2 rooms at least 3 rooms 1 or 2 rooms at least 3 rooms 

 

We define two competing partitions for both types of dwellings. For terraced houses the first partition includes 

110 stratums including most important regions and their sub-areas for the apartment-types shown above. The 

second partition is derived applying additional stratification to the first one by including the most important 

postal areas into it. So, we follow the idea of Koev (2003, pp.31) and apply postal areal indicators for the 

municipalities, which are separately examined and mere municipal indicators for the rest of the regions. The 

second partition for terraced houses includes about 1350 stratums. For blocks of flats two partitions are done 

similarly – first partition includes 165 and second one about 1730 strata.  

 

Two nested competing partitions are applied first for statistical inference of price model (see Suoperä & Vartia, 

2011, p. 21, Table 5.2) and second to test whether the first partition is detailed enough or is there a need for a 

more detailed partition. This will be done following Suoperä and Auno (2021) and Suoperä, Nieminen, 

Montonen and Markkanen (2021). In the index number chapter these two partitions are used as classification 

index, which measures the price change for unweighted geometric and weighted arithmetic average prices. 

 

3.2 The Price Model for Heterogeneously Behaving Cross-sections 
 

Because of algebraic properties of the Gauss LS-regression (i.e., least squares) our focus is analyzing vector of 

averages for stratum 𝐴𝑘, say (�̅�𝑘0, �̅�𝑘𝑡, �̅�𝑘0, �̅�𝑘𝑡), where �̅�-variables are some average prices and �̅�-vectors 

corresponding averages of quality characteristics of dwellings for stratum 𝐴𝑘 in time periods 0, t. When �̅�𝑘𝑡 −



 

 

�̅�𝑘0 ≈ 𝟎 quality adjusting is unnecessary, otherwise quality adjustment is needed. For quality adjustment we 

use regression analysis that is combined with two partitions defined in chapter 3.1.  

 

We define 34 separate estimation areas for terraced houses and block of flats. 28 of these estimation areas are 

largest municipals and 6 of them are based on Nuts2 or larger areas. For these estimation areas (i.e., separate 

price models) we apply two nested partitions: First our basic regional partition (terraced houses 110 and block 

of flats 165 stratums) and second, our basic regional partition is stratified by additional stratification based on 

postal areas or smaller municipals. Simply put, our two partitions are nested or hierarchical together. Our 

problem is to find a proper partition of transacted dwellings using principles of statistical inference and to make 

sure that the quality differences are controlled properly. 

Next, we define price model for some estimation area, say for Helsinki – all other estimation areas (34 areas) 

are analyzed analogously. The price model is specified as semilogarithmic regression model, which is linear 

with respect to parameters, that is (see Hsiao, 1986, s.29-32) 

 

(1) log(𝑝𝑖𝑡) = 𝛽01𝑡 + ⋯ + 𝛽0𝑘1𝑡 + 𝒙′
𝑖𝑡𝜷𝑡 + 𝜀𝑖𝑡,  

 

where log(𝑝𝑖𝑡) presents dwelling specific logarithmic unit value (i.e., unit price) per square meter in estimation 

area Helsinki in period t. The k-dimensional vector of unknown parameters 𝜷𝑡 in the regression model is 

estimated separately for any 34 estimation areas and dwelling-type for period t. Parameters  𝛽01𝑡, … 𝛽0𝑘1𝑡 
represent stratum effects in Helsinki in period t. The k-dimensional vector 𝒙′

𝑖𝑡 consists of exogenous 

independent variables (i.e. quality characteristics). Term 𝜀𝑖𝑡 is a random error term, which does not contain 

systematic information about the data generating process of prices. It is assumed, that  𝐸(𝜀𝑖𝑡|𝒙′
𝑖𝑡) = 0 and 

𝑉𝑎𝑟(𝜀𝑖𝑡|𝒙′
𝑖𝑡) = 𝜎𝑡

2< ∞. In our model specification, the error covariance matrix is diagonal – the most natural 

situation for heterogeneously behaving cross-sectional data (i.e., 34 estimation areas in time).  

 

The estimation of unknown parameters follows the ordinary-least-squares (OLS) method. The OLS estimators 

are obtained by minimizing the residual sum of squares using basic principles of Gauss LS-regression. We do 

the estimation using a twostep OLS method (see Davidson & MacKinnon, 1993, p. 19-25), where we transform 

observations into deviation of means with respect to our partition. In step one, we get estimates for our 

unknown parameters that we denote as �̂�𝑡 . In the second step partition-specific or stratum effects �̂�0𝑘𝑡, for 

stratum k are estimated as  

 

(2)  �̂�0𝑘𝑡 = 𝑙𝑜𝑔(�̅�𝑘𝑡) − �̅�′
𝑘𝑡�̂�𝑡, for k = 1,… , 𝑘1. 

where �̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡
1/𝑛

 present unweighted geometric average price for stratum k and �̅�′
𝑘𝑡-vector unweighted 

arithmetic averages of quality characteristic (see Koev, 2003, p. 22-26). According to the Frisch, Waugh and 

Lovell -theorem (Davidson & MacKinnon, 1993), the OLS –estimation of the slopes can always be carried out 

via centralized variables. The constant term for stratum k is estimated by forcing the regression plane through 

the point of averages (algebraic property of Gauss regression). This method is computationally extremely 

effective especially when partition includes hundreds/thousands of strata (see Suoperä & Vartia, 2011). The 

semilogarithmic equation (1) estimated by the OLS takes the form (here the first equation corresponds to 

Helsinki region) 

 

(3) log(𝑝𝑖𝑡) = �̂�01𝑡 + ⋯ + �̂�0𝑘1𝑡 + 𝒙′
𝑖𝑡�̂�𝑡 + 𝜀�̂�𝑡. 

 

The OLS estimators and the equation (3) - simply log-prices, quality characteristics and their arithmetic and 

geometric averages - is everything that is needed to construction a hedonic index numbers for any stratum, here 

for strata in Helsinki.  

 

The estimation of equation (1) is based on equal weights for all observations. The method is traditionally used 

and is clearly interpretable. Koev (2003) underlines that the statistical properties of price changes based on 

unweighted geometric average prices and their Oaxaca decompositions is also clearly interpretable. This means 

that quality adjusting combined with index numbers have been derived by algebra and therefore are based on 



 

 

easily understandable transparent mathematics. This is a fine property of hedonic methods introduced by Koev 

(2003). 

 

Another principle using equations (1) – (3) is to weight observations in equation (3) by ‘a weighted-by-

economic-importance’-variable and aggregate price model into stratum-aggregates. For examples of this 

method see Suoperä (2004, 2006); Suoperä & Auno (2021); Suoperä, Nieminen, Montonen and Markkanen 

(2021). This approach satisfies also basic algebraic properties of Gauss LS-regression and leads to identical 

Oaxaca decompositions as in Koev (2003), but instead of unweighted geometric means they are based on 

weighted arithmetic average prices. The method used in these studies is a standard practice in survey studies – 

first estimate and then weight. Applications of Koev and Suoperä are seminal hedonic methods combining 

regressions and index numbers. The methods are presented in Chapter 4.  

 

 

3.3 The Aggregation Stage 
 

In regression analysis stage transacted dwellings are ‘split’ locally and by apartment-type into two nested 

partitions. The stratums in both partitions are grouped regionally into 34 separate estimation equations. These 

equations – price models – are specified as semilogarithmic having flexible functional form. Table 1 belove 

describes explanatory variables used in regional price models. Price modelling for dwellings is specified to be 

heterogeneously behaving cross-sections which means estimation of thousands of unknown parameters. How to 

summarize this ‘huge mass of statistical information’? For that we use the method that was introduced in 

Suoperä and Vartia (2011). We use the following steps: 34 separately estimated equations (3) for terraced 

houses and blocks of flats include thousands of different behaviors for every year. They are summed up, and 

after that making a solution backward into observation level, we get first the representative aggregate equation 

that is common/representative for all behaviors and second individual deviations of it as heterogeneity 

behaviors. To obtain the standard errors, we estimate the model again with OLS. We do this because obtaining 

the standard errors would be difficult otherwise (Suoperä and Vartia, 2011, p. 11-18).  

 

 

Table 3.1: The exogenous variables used in the regional price models for terraced houses and block of flats in 

Finland. 

Variable Description 

Dwelling type 

dummies 

Classify observations into four dwelling types: one-room, two-rooms, three-rooms or more 

and terraced houses for each region 

𝑥1 Square meters of the transacted dwelling  

𝑥2 = 𝑠𝑞𝑟𝑡(𝑥1) Square root of the square meters of the transacted dwelling 

𝑥3 Age of dwelling in years is calculated here as deviation from the year 2020 (as in Koev, 

2003, p.39), but will be changed every year when the base year is changed. 

𝑥4 = 𝑠𝑞𝑟𝑡(𝑥3) Square root of age 

𝑥5 Driving time by car to the nearest local centre. Centres defined by the Finnish 

Environment Institute are areas that have dense and versatile services, such as shops, 

leisure services, public services, as well as jobs in various industries and habitation.  

𝑥6 = 𝑠𝑞𝑟𝑡(𝑥5) Square root of the average driving time by car to the nearest local centre.  

𝑥7 Owner of the building lot: Dummy variable that gets value 0, when the building lot is 

rented and otherwise 1. 

 

Before we present empirical results of the synthesis stage, we test the significance of the additional partition 

based on postal areas. Practically this means that we must make statistical inference of a set of 34 equations 

according two partitions. This is done separately for terraced houses and blocks of flats. Our hypothesis is 

clear: Additional stratification by postal areas is unnecessary meaning restricting them zero in estimation. This 



 

 

leads to two sum of squared errors – one for set of free models and another to restricted ones. The most natural 

test for that is familiar F-test, that is 

 

 𝐹~ {(𝑆𝑆𝐸0 − 𝑆𝑆𝐸1)/𝑅} {𝑆𝑆𝐸1 (𝑁 − 𝐾)⁄ }⁄  

 

where 𝑆𝑆𝐸0 is the sum of squared errors of the restricted model, 𝑆𝑆𝐸1 is the sum of squared errors of the free 

model, (𝑁 − 𝐾) is the degrees of freedom of the free model and R is the number of linear restrictions. 

 

When the degrees of freedom for free model becomes large - here for terraced houses and block of flats more 

than 15000 and 35000 respectively – the F-statistics reduced into 𝜒𝑅
2-test, where R corresponds number of 

linear restrictions (see Greene 1997, p. 344 and p. 657). For example, a 1% critical value of 𝜒60
2 = 1.46 and 

becomes closer to one when R > 60. Table 3.2 shows results for testing the significance of additional partition 

based on postal areas. 

 

Table 3.2: The values of the F–test statistics in testing the hypothesis of the homogeneity of partitions. The number of 

linear restrictions, R, are in parenthesis. 

Year 2015 2016 2017 2018 2019 2020 

Terraced houses 11.9 11.6 10.5 10.3 10.0 10.3 

Block of flats 11.7 12.2 10.4 11.2 11.6 12.4 

 

The above Table tells that the hypothesis is always highly significant and rejected. If the additional partition is 

omitted from price modelling, the price models necessarily lead into biased estimation of behavioral beta-

parameters because of omission of important variables - here detailed postal area partition. 

 

Now we have knowledge of statistical inference of our price models. In the following two tables we show 

empirical results based on the analysis and synthesis technique similarly as in Suoperä and Vartia (2011).  

 

The estimation results for terraced houses are convincing. Two last estimates and their standard errors (i.e., 

He(𝛼) and He(𝑥𝛽)) tells the same story as F-test statistics – additional partition based on postal areas is 

extremely significant for all estimations. Similar results hold also for behavioral heterogeneity He(𝑥𝛽). 

 

The estimation results for block of flats are even more convincing compared to terraced houses. The same holds 

also for heterogeneity behaviors, He(𝛼) and He(𝑥𝛽), which are extremely significant for all estimations. 

 

Using analysis and synthesis stages for estimations of heterogeneously behaving cross-sections similarly as in 

Suoperä and Vartia (2011) more than 10000 parameters and their standard errors and other statistics may be 

presented simply by two tables. Tables will adequately tell how reliable our price modelling really are. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Table 3.3: Estimation results for the price equations for terraced houses using analysis and 

synthesis-technique developed in Suoperä and Vartia (2011).  

Year     2015     2016     2017     2018     2019     2020 

Obs    17048    16700    17133    16930    17248    19079 

Stratum     1348     1351     1363     1342     1357     1357 

Adjr2 0.865498  0.86624 0.859484 0.852368 0.847891  0.83561 

RMSE 0.166412  0.16755 0.177312 0.192414  0.20241 0.220914 

Constant 8.717586 8.668361 8.659984 8.682045 8.522123 8.744483 

se(c) 0.037465 0.038702 0.039722 0.043469 0.044198 0.045708 

𝑥1 -0.00115 -0.00064 -0.00263   -0.002 -0.00208  -0.0006* 

se(𝑥1) (0.000451) (0.000464) (0.000477) (0.000521) (0.000531) (0.000551) 

𝑥2  -0.0276 -0.03508 -0.00695 -0.00822 -0.00558 -0.03966 

se(𝑥2) (0.008051) (0.008328) (0.008587) (0.009398) (0.0096) (0.010009) 

𝑥3 0.008345 0.006184 0.007471 0.008012 0.004229 0.006676 

se(𝑥3) (0.000372) (0.000396) (0.000372) (0.000385) (0.000411) (0.000382) 

𝑥4 -0.20295 -0.17823 -0.19322 -0.20057 -0.16173 -0.18276 

se(𝑥4) (0.004288) (0.00444) (0.004175) (0.004259) (0.004353) (0.004014) 

𝑥5 -0.00737  -0.0078 -0.00316 0.002768 -0.00069  0.00107 

se(𝑥5) (0.000536) (0.000494) (0.00047) (0.000384) (0.000615) (0.000805) 

𝑥6 0.005297 0.009539 -0.01416 -0.05397 -0.03171 -0.03407 

se(𝑥6) (0.003965) (0.003704) (0.003597) (0.003222) (0.004547) (0.00568) 

𝑥7  0.04604 0.050197 0.039587 0.053638 0.078146 0.073761 

se(𝑥7) (0.003322) (0.003354) (0.00351) (0.003778) (0.004008) (0.004131) 

He(𝛼)        1        1        1        1        1        1 

se(He(𝛼)) (0.003756) (0.003593) (0.003681) (0.003788) (0.003871) (0.003963) 

He(𝑥𝛽)        1        1        1        1        1        1 

se(He(𝑥𝛽)) (0.004644) (0.00419) (0.004552) (0.004622) (0.004385) (0.00525) 

Note: all parameters are statistically significant with 99% confidence, with the exception of the parameters 

highlighted in yellow. 

 

 

Table 3.4: Estimation results for the price equations for block of flats using analysis and 

synthesis-technique developed in Suoperä and Vartia (2011). 

Year     2015     2016     2017     2018     2019     2020 

Obs    38219    38119    38285    37052    37115    38813 

Stratum     1733     1723     1721     1710     1711     1723 

Adjr2 0.905216 0.905714 0.902352 0.897711 0.899173 0.899524 

RMSE 0.185637 0.190408   0.1966 0.209496 0.215889 0.223601 

Constant 10.69365 10.72264 10.72156 10.69992 10.63826  10.4095 

se(c) 0.024008 0.024911 0.024742 0.026185 0.026652 0.026329 

𝑥1 0.017103 0.018156 0.018412 0.017935 0.019187 0.017345 

se(𝑥1) (0.000372) (0.00039) (0.000386) (0.000412) (0.000425) (0.000436) 

𝑥2 -0.34458 -0.36064 -0.36816 -0.35858 -0.37508 -0.34277 

se(𝑥2) (0.005675) (0.005993) (0.005973) (0.006379) (0.006594) (0.006727) 

𝑥3 0.020625 0.020378 0.018763 0.019579 0.017837 0.015518 

se(𝑥3) (0.000257) (0.000252) (0.000253) (0.000259) (0.000251) (0.000235) 

𝑥4 -0.34753 -0.34436 -0.32478 -0.33085 -0.30482 -0.26915 

se(𝑥4) (0.003273) (0.003176) (0.003129) (0.003167) (0.003005) (0.002726) 



 

 

𝑥5 -0.00015 -0.00383 -0.00625 -0.00466 -0.01101 -0.00797 

se(𝑥5) (0.000708) (0.000723) (0.0008) (0.000875) (0.000845) (0.000847) 

𝑥6 -0.06122 -0.04783 -0.03421 -0.04147 -0.01246 -0.03729 

se(𝑥6) (0.003844) (0.003901) (0.00425) (0.004615) (0.004499) (0.00454) 

𝑥7 0.067217 0.067989  0.06661 0.060394 0.077362 0.087561 

se(𝑥7) (0.002501) (0.002501) (0.002645) (0.002811) (0.002877) (0.002915) 

He(𝛼)        1        1        1        1        1        1 

se(He(𝛼)) (0.002845) (0.002587) (0.002994) (0.002717) (0.002683) (0.002777) 

He(𝑥𝛽)        1        1        1        1        1        1 

se(He(𝑥𝛽)) (0.002098) (0.002041) (0.002086) (0.002153) (0.002122) (0.002057) 

 

 Note: all parameters are statistically significant with 99% confidence, with the exception of the parameters 

highlighted in yellow. 

 

 

The equation (1) has non-linear square root terms in number of square meters, age and distance in driving 

times. To interpret the estimation results of eq. (3) we take partial derivatives with respect to number of square 

meters (𝑥1), age (𝑥3) and distance (𝑥5) of transacted dwelling, that is (here postal area r) 

 

𝜕log (𝑝𝑖𝑟𝑡)

𝜕𝑥𝑖1𝑟𝑡
 =  �̂�1𝑟𝑡 + �̂�2𝑟𝑡/𝑠𝑞𝑟𝑡(𝑥𝑖1𝑟𝑡), ∀ 𝑖 ∈  𝐴𝑟, 

𝜕log (𝑝𝑖𝑟𝑡)

𝜕𝑥𝑖3𝑟𝑡
 =  �̂�3𝑟𝑡 + �̂�4𝑟𝑡/𝑠𝑞𝑟𝑡(𝑥𝑖3𝑟𝑡), ∀ 𝑖 ∈  𝐴𝑟 and 

 

𝜕log (𝑝𝑖𝑟𝑡)

𝜕𝑥𝑖5𝑟𝑡
 =  �̂�5𝑟𝑡 + �̂�6𝑟𝑡/𝑠𝑞𝑟𝑡(𝑥𝑖5𝑟𝑡), ∀ 𝑖 ∈  𝐴𝑟. 

 

When we calculate cumulative sums of partial derivates for ordered cohorts (i.e. 𝑥𝑖1, 𝑥𝑖3 are ordered starting 

from smallest) and get Figures 1 to 3.  

 

Figure 1: The price effect of size (log-%) on the           Figure 2: The price effect of age (log-%) on the  

square meter price of apartment (year 2020).                 square meter price of apartment (year 2020). 

 

 

 

  



 

 

Figure 3: The price effect of distance (log-%) on the  

square meter price of apartment (year 2020). Driving 

time to the nearest local centre in minutes. 

 

In Figure 1 we see that square meter prices decline differently for terraced houses (T) and block of flats (B) 

when number of squares increase. For block of flats square meter price of a 60 𝑚2 dwelling is about 30 – 35 

log-% lower compared to a 20 𝑚2 flat - for terraced houses only about 15 log-%. Increase of age will decline 

prices quite similarly for terraced houses and block of flats up to 40 - 50 years old dwellings, but after that 

differently – increase of age of old block of flats in town centers increases prices slightly, but not for terraced 

houses. The Figure 3 tell that increase of driving time from center decline prices differently for these dwelling 

types. The same 30 log-% decline of prices is achieved for block of flats by 25 minutes and for terraced houses 

by 45 minutes. This is caused different location of dwelling types – block of flats nearby center and terraced 

houses mostly in fringes of centers. 

 

The estimation results are summarized as: 

1. Almost all parameters for representative behavior are statistically significant (statistically insignificant 

parameters are highlighed with yellow color at 99 % level). 

2. Postal area indicators (He(𝛼) ) are strongly significant for terraced houses and block of flats and must 

be included into the price models. Also, separate estimation for both dwelling type is necessary.  

3. The data should be analyzed by heterogeneously behaving cross-section (i.e. He(𝑥𝛽)). 

4. All quality characteristics (i.e., 𝑥1, 𝑥3, 𝑥5) have negative effect on prices (see Figures 1-3). The owner 

of the building lot-dummy variable have positive and significant effect on square meter prices for both 

dwelling types. 

 

The analysis and synthesis stages include all that is necessary for construction of hedonic index numbers. We 

need estimated price equations at observation level, knowledge about basic algebraic properties of estimation 

method, knowledge about consistent and unbiased aggregation rules including calibration of observations, 

knowledge of conditional and unconditional averages and knowledge of index number formulas. Next, we 

show how these ‘parts of whole’ are combined together by simple and transparent algebra. 

 

 

4 Combining Regression Analysis and Index Numbers 
 

When bilateral or multilateral methods are not available for commodities comparable quality, a well-known 

time-dummy hedonic regression is often used to resolve the problem of quality adjusting. However, as 

 



 

 

mentioned, there are issues with its use. Namely, the statistical properties of the time-dummy estimator maybe 

ambiguous, when the regression includes weights by economic importance (see Summers (1973); Rao (2004) 

and Diewert and Fox (2018)). Moreover, the link with the traditional index number theory is somewhat unclear, 

i.e. how to proceed with aggregation. We propose a solution for quality adjusting based on simple statistics, 

some algebra and hedonic index numbers, which in our view is preferable for statistical offices, since it is 

transparent, minimizes modeling assumptions, and is consistent with index number tradition of consistency in 

aggregation. Our analysis herein follows the tradition of Koev (2003); Suoperä (2004, 2006); Vartia, Suoperä & 

Vuorio (2021) and Suoperä & Auno (2021). 

 

In the first step, we have two partitions for price models and two consistent aggregation rules for them. We take 

logical steps, starting from aggregation of observations of equation (3) into strata for two partitions using two 

aggregation rules – first being unweighted and second weighted-by-economic-importance-variable. We provide 

an example using one arbitrarily selected stratum and time periods (0, t), but similar process can be followed 

for all other strata. 

 

The second step is the well-known decomposition introduced by Oaxaca (1973) for stratum aggregates – here 

for two partitions and two aggregates (unweighted and weighted). Two partitions are necessary – we show that 

inadequate stratification of transacted dwellings leads to biased change estimates including not only true price 

changes but also quality changes that are not controlled by the hedonic model well enough. This is done using 

additive decomposition of value change.  

 

The last step is similar as traditional index numbers – the averaged stratum-level price decompositions are 

summed up using weights of index number formulas, that is ‘weights-by-economic-importance’-variable. We 

analyze two sets of index number formulae. The first set is based on formulas using old or new weights 

(asymmetrical weights) and are called as a basic set of index numbers. Laspeyres (L) and Log-Laspeyres (l) 

uses base period weights (i.e. old weights) and Log-Paasche (p) and Paasche (P) instead uses observation 

period weights (i.e. new weights). The second set of index numbers include four formulae using symmetrical 

weights: Montgomery-Vartia (MV), Törnqvist (T), Fisher (F) and Sato-Vartia (SV). We call these index number 

formulae as excellent. For the fundamental analysis of these index number formulae see Vartia & Suoperä, 

2018. The analysis therein is in logarithmic form. 

 

 

4.1 Aggregation of Observations into Strata 
 

We analyze two aggregation rules for observations. The first is traditional unweighted geometric average, 

where a weighted-by-economic-importance-variable is neglected. This means that all transacted dwellings get 

an equal weight in aggregation. The second aggregation rule is weighted arithmetic average, say unit price, that 

has been derived in this study to be logarithmic representation of unit value similarly as in Suoperä (2004, 2006 

p.2-5, Annex 5); Vartia, Suoperä & Vuorio (2021) and Suoperä & Auno (2021, p. 3-7). Fundamental analysis is 

shown in these papers and is based on utilization of logarithmic mean developed by Törnqvist (L. Törnqvist, 

1935, p. 35; Y. Vartia, 1976; L. Törnqvist, P. Vartia & Y. Vartia, 1985, p. 44). 

 

In the previous chapter we specify and estimate 34 price models separately for terraced houses and block of 

flats. For notational simplicity we take only one equation (no subindex for equation j = 1,…,34) and explain the 

most important algebraic properties of the equation (3), when the equation is estimated using a standard OLS-

method with equal weights (Greene, 1997, p. 243-244): 

1. Aggregation of observations for stratum k leads to conditional average  

𝑙𝑜𝑔(�̅�𝑘𝑡) = �̂�0𝑘𝑡 + �̅�′
𝑘𝑡�̂�𝑡, for k = 1,…, 𝑘1, where �̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡

1/𝑛𝑘 , 𝑖 = 1, … , 𝑛𝑘,  

meaning that regression hyperplane passes through the means of dependent and independent variables. 

2. Residuals sum up to zero for all k = 1,…, 𝑘1 (unbiased estimators). 



 

 

3. The average of fitted values of prices (conditional average) equals the average of actual prices 

(unconditional average) in all stratums k = 1,…, 𝑘1.  

The properties of the OLS are based on equal weighting of observations. Koev (2003) uses in his study these 

three properties and derive a hedonic quality adjusting method that is based on index numbers. These three 

properties combined with the best linear unbiased estimator, BLUE (homoscedastic errors), forms the basis for 

hedonic quality adjusting that is hard to beat. These properties are derived using consistent aggregation rules 

(CA) of our averages, unbiased statistics and index numbers with symmetric or asymmetric weights.  

 

We see the WTPD-model (Summers 1973; Diewert and Fox, 2018) – estimate and weight simultaneously - 

approach problematic because of asymmetric weighting variable, for example value- or quantity shares, 

depending on unit values (i.e., unit prices as dependent variable); first causing unknown properties (bias) of 

beta estimates and that’s why second unknown bias for quality adjusting. Our method is based on a very simple 

‘Estimate first and then weight’ approach. 

 

We analyze another stratum aggregate for equation (3) – weighted arithmetic average that satisfies above three 

algebraic properties of the OLS method. The derivation follows Suoperä (2004, 2006), Vartia, Suoperä and 

Vuorio (2021), and Suoperä and Auno (2021) and is based on a simple idea used in survey studies: First 

estimate equations (3) separately and then weight them in aggregation. In derivation, we need values, 

quantities and prices (i.e., 𝑣𝑖𝑘𝑡  ,  𝑞𝑖𝑘𝑡 and 𝑝𝑖𝑘𝑡) and a theorem of logarithmic mean. Logarithmic mean is defined 

for two positive figures x and y as follows (L. Törnqvist, 1935, p. 35; Y. Vartia, 1976; L. Törnqvist, P. Vartia 

and Y. Vartia, 1985, p. 44) 

 

𝐿(𝑥, 𝑦) = (𝑥 − 𝑦) log(𝑥 𝑦⁄ ) , 𝑖𝑓 𝑥 ≠ 𝑦⁄  and 

             = x, if x = y 

 

Another useful representation is ( ) ( ) ( )x,yLy-xy/x =log  meaning that the log change from x to y is a relative 

change compared to the logarithmic mean. This indicator of relative change is a ratio that is symmetrical, 

additive and independent of measurement unit and that is why it may applied for sets of positive values of x and 

y. Let us now analyze values, quantities and prices for dwellings located in arbitrary stratum kA  in time period 

t, that is {𝑣𝑖𝑘𝑡, 𝑞𝑖𝑘𝑡, 𝑝𝑖𝑘𝑡} and define their logarithmic mean as follows 

 

𝐿(∑ 𝑣𝑖𝑘𝑡 ,𝑖 ∑ 𝑞𝑖𝑘𝑡𝑖 ) = ∑
𝑣𝑖𝑘𝑡−𝑞𝑖𝑘𝑡

log (∑ 𝑣𝑖𝑘𝑡 ∑ 𝑞𝑖𝑘𝑡𝑖⁄𝑖 )𝑖 , or  log(∑ 𝑣𝑖𝑘𝑡 ∑ 𝑞𝑖𝑘𝑡𝑖⁄𝑖 ) = ∑
𝑣𝑖𝑘𝑡−𝑞𝑖𝑘𝑡

𝐿(∑ 𝑣𝑖𝑘𝑡,𝑖 ∑ 𝑞𝑖𝑘𝑡𝑖 )𝑖 . 

 

Using above equations and some algebra we get (use definition of weighted arithmetic average 
∑ 𝑣𝑖𝑘𝑡 ∑ 𝑞𝑖𝑘𝑡𝑖⁄𝑖 = �̅�𝑘𝑡 and definition of unit value 𝑣𝑖𝑘𝑡 𝑞𝑖𝑘𝑡⁄ = 𝑝𝑖𝑘𝑡, see also definition of logarithmic mean) 

 

(4) log(∑ 𝑣𝑖𝑘𝑡 ∑ 𝑞𝑖𝑘𝑡𝑖⁄𝑖 ) = ∑
𝐿( 𝑣𝑖𝑘𝑡,𝑞𝑖𝑘𝑡)

𝐿(∑ 𝑣𝑖𝑘𝑡,𝑖 ∑ 𝑞𝑖𝑘𝑡𝑖 )
log (𝑣𝑖𝑘𝑡 𝑞𝑖𝑘𝑡⁄ )𝑖  ↔ 

 log(�̅�𝑘𝑡) = ∑
𝐿( 𝑣𝑖𝑘𝑡,𝑞𝑖𝑘𝑡)

𝐿(∑ 𝑣𝑖𝑘𝑡,𝑖 ∑ 𝑞𝑖𝑘𝑡𝑖 )
log (𝑝𝑖𝑘𝑡)𝑖  

 

The above equation is a logarithmic representation of unconditional weighted arithmetic average. The 

corresponding conditional average is derived in Suoperä (2006, p 4-5, Annex 5). All these statistics are 

unbiased and consistent in aggregation (CA). These statistics satisfy properties 1 to 3. For unweighted 

geometric average, unconditional and conditional averages are trivially equal. Using ‘a weighted-by-economic-

importance’-variable  𝑤𝑖𝑘𝑡 in (4) to derive estimates for weighted arithmetic average leads to 

reparameterization of the price model. For this reparametrized model �̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡
𝑤𝑖𝑘𝑡 = �̿�𝑘𝑡 holds exactly even 

the weights are not independent of measurement units. In Table 4.1 we collect together the most important 

statistics for which we apply hedonic quality adjusting and index numbers. 

 



 

 

 

Table 4.1: Important statistics for hedonic quality adjusting. 

Average Unconditional Conditional 

Unweighted 

geometric average 
�̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡

𝑤𝑖𝑘𝑡  ,  

where 𝑤𝑖𝑘𝑡 = 1/𝑛𝑘, for all  𝑖 ∈ 𝐴𝑘 

𝑙𝑜𝑔(�̅�𝑘𝑡) = �̂�0𝑘𝑡 + 𝒙′
𝑘𝑡�̂�𝑡 or by portioned vectors 

𝑙𝑜𝑔(�̅�𝑘𝑡) = (1: 𝒙𝑘𝑡)′ (
�̂�0𝑘𝑡

�̂�𝑡

) = �̅�′
𝑘𝑡�̂�𝑡

∗. 

Weighted 

arithmetic average 
�̿�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡

𝑤𝑖𝑘𝑡  ,  

where 𝑤𝑖𝑘𝑡 =
𝐿(𝑣𝑖𝑘𝑡 , 𝑞𝑖𝑘𝑡 )

𝐿(∑ 𝑣𝑖𝑘𝑡𝑖 ,∑ 𝑞𝑖𝑘𝑡𝑖 )
, for all  𝑖 ∈ 𝐴𝑘 

log(�̿�𝑘𝑡) =  �̌�0𝑘𝑡 + 𝒙𝑘𝑡
′ �̂�𝑡  or by portioned vectors 

𝑙𝑜𝑔(�̿�𝑘𝑡) =(1: 𝒙𝑘𝑡)′ (
�̌�0𝑘𝑡

�̂�𝑡

) = �̅�′
𝑘𝑡�̌�𝑡

∗, 

where  �̌�0𝑘𝑡 =  log(�̿�𝑘𝑡) − 𝒙𝑘𝑡
′ �̂�𝑡,  

where 𝒙𝑘𝑡
′ = ∑ 𝑤𝑖𝑘𝑡𝒊 𝒙𝑖𝑘𝑡

′  

 

 

 

 

4.2 Algebra of Price-Ratio Decompositions 
 

In the previous chapter unbiased estimates take an important role: They are unbiased estimates of unknown 

parameters and unbiased unconditional and conditional averages – here unweighted geometric and weighted 

arithmetic averages. Now we show how these statistics may be used in hedonic quality adjusting applying them 

to a well-known decomposition developed by Oaxaca (1973). The decomposition is not unique but can be 

constructed consistently and similarly as in Koev (2003) and Suoperä (2004, 2006).  

 

Following the example in Koev (2003), we take two time periods, the base period (t = 0, a previous year) and 

the observation quarter of current year (t) and only one stratum 𝐴𝑘. We use vector notations for our conditional 

and unconditional average prices and calculate the difference between two price models (0, t) in spirit of 

Oaxaca. The algebra is presented only for unweighted geometric average and may be deduced analogously for 

weighted arithmetic average. The differences in prices are given as  

 

(5a) 𝑙𝑜𝑔(�̅�𝑘𝑡) − 𝑙𝑜𝑔(�̅�𝑘𝑜) = �̅�′
𝑘𝑡�̂�𝑡

∗ − �̅�′
𝑘𝑡�̂�0

∗  ↔ 

(5b) 𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ ) = (�̅�′
𝑘𝑡�̂�0

∗ − �̅�′
𝑘0�̂�0

∗ ) + (�̅�′
𝑘𝑡�̂�𝑡

∗ − �̅�′
𝑘𝑡�̂�0

∗ ). 

 

We are playing with average prices and some interpretations are needed. First, �̅�′
𝑘0�̂�0

∗ = 𝑙𝑜𝑔(�̅�𝑘𝑜) and 

�̅�′
𝑘𝑡�̂�𝑡

∗ = 𝑙𝑜𝑔(�̅�𝑘𝑡), where �̅�𝑘𝑡 = ∏ 𝑝𝑖𝑘𝑡
𝑤𝑖𝑘𝑡  , where 𝑤𝑖𝑘𝑡 = 1/𝑛𝑘, for all  𝑖 ∈ 𝐴𝑘 (see Table 4.1). The term 

�̅�′
𝑘𝑡�̂�0

∗ =  𝑙𝑜𝑔(�̃�𝑘𝑡) is an estimated/imputed average price of observation period quality variables (i.e., �̅�′
𝑘𝑡) 

using base periods valuation of characteristics (i.e., �̂�0

∗
). Collecting these terms together we get  

(6) 𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ ) = 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) + 𝑙𝑜𝑔(�̅�𝑘𝑡 �̃�𝑘𝑡⁄ ) 

The equation (6) is very simple and holds as an identity. On the left, we have the price-ratio of actual average 

prices (here conditional being equal with unconditional average), and on the right, the first term is quality 

correction estimated using base period valuation of characteristics (i.e., 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) = (�̅�′
𝑘𝑡 − �̅�′

𝑘0)�̂�0
∗ ) and 

the second is quality adjusted price change (i.e, 𝑙𝑜𝑔(�̅�𝑘𝑡 �̃�𝑘𝑡⁄ ) = �̅�′
𝑘𝑡(�̂�𝑡

∗ − �̂�0
∗ ) ) estimated with comparable in 

quality (i.e., �̅�′
𝑘𝑡, for all k and t).    

The equations (5a) and (5b) includes the insight in Koev (2003): First, estimation of price models (here 34 

equations for both dwelling-types) should estimate only for base period - �̅�′
𝑘𝑡�̂�𝑡

∗ = 𝑙𝑜𝑔(�̅�𝑘𝑡) holds trivially 

meaning that conditional and unconditional averages are equal for any t and k (i.e., algebraic property of the 

OLS-method). Second, quality adjusting is based on simple and transparent algebra. Third, the quality 

corrections may carry out separately for any characteristics of the price model, that is 



 

 

 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) = (�̅�′
𝑘𝑡 − �̅�′

𝑘0)�̂�0
∗ = (1: �̅�𝑘𝑡)′ (

�̂�0𝑘𝑡

�̂�0

) − (1: �̅�𝑘0)′ (
�̂�0𝑘𝑡

�̂�0

) 

  = (�̅�1𝑘𝑡 − �̅�1𝑘0)�̂�10 + ⋯ + (�̅�𝑅𝑘𝑡 − �̅�𝑅𝑘0)�̂�𝑟0, 

where subscript r =1,…,R refers exogenous variables of the price model. The equation above tells us that when 

�̅�𝑟𝑘𝑡 − �̅�𝑟𝑘0 = 0, for all (r, t, 0), the quality adjusting is unnecessary, and equation (6) reduces to  a very simple 

logarithmic price-ratio of average prices – in terminology of traditional index calculation into classification 

index. When �̅�𝑟𝑘𝑡 − �̅�𝑟𝑘0 ≠ 0, for all (r, t, 0) quality correction may perform for single variable alone or some 

reasonable combinations quality characteristics (here for average age, average of square meters, average 

driving time and average of owner of building lot). 

 

The equation (6) is in center for which index number formulas are applied. We analyze formulae that have 

asymmetric and symmetric weights and apply them for two partitions and two price-concept - unweighted 

geometric and weighted arithmetic averages. The analysis is done using logarithmic representations of formulae 

and price-decompositions.  

 

 

4.3 Index Number Formulas 
 

Index number theory begins by aggregating the decomposition (6). We adopt two sets of index number 

formulae. The first set is based on formulae using asymmetric old (Laspeyres La and Log-Laspeyres l) or new 

weights (Log-Paasche p and Paasche P). The second set of index numbers includes four formulae: 

Montgomery-Vartia (MV), Törnqvist (T), Fisher (F) and Sato-Vartia (SV). These are based on symmetrical 

weighting and are called as excellent formulae (see Vartia & Suoperä, 2017, 2018). 

In Table 4.2 we gather all information that is necessary for calculation of hedonic price indices. All index 

number formulae are represented in logarithmic form, including Laspeyres, Paasche and Fisher (see Vartia, 

1976, p.128). Practically this means, that the aggregation of price changes or its decomposition in (6) is always 

done much simpler in additive form and then transformed back to indices.  

 

Table 4.2: Weights for index number formulae (logarithmic forms). 

Basic formulae, see Vartia & Suoperä, 2017, 2018, 𝐿 means logarithmic mean, see Vartia, 1976a, p. 128 

Symbol and name of formula Weights of the formula 

Laspeyres, f = L 𝑤𝑘,𝑓 = 𝑤𝑘,𝐿
0 = 𝐿(𝑝𝑡𝑞0, 𝑝0𝑞0) 

log-Laspeyres, f = l 𝑤𝑘,𝑓 = 𝑤𝑘,𝑙
0 = 𝑣𝑘

0 𝑉0⁄  

log-Paasche, f = p 𝑤𝑘,𝑓 = 𝑤𝑘,𝑝
𝑡 = 𝑣𝑘

𝑡 𝑉𝑡⁄  

Paasche, f = P 𝑤𝑘,𝑓 = 𝑤𝑘,𝑃
𝑡 = 𝐿(𝑝𝑡𝑞𝑡, 𝑝0𝑞𝑡) 

Excellent formula, see Vartia & Suoperä, 2017, 2018), 𝐿 means logarithmic mean, see Vartia, 1976 

Törnqvist, f = T 𝑤𝑘,𝑓 = �̅�𝑘,𝑇 = 0.5 · (𝑤𝑘
0 + 𝑤𝑘

𝑡) 

Sato-Vartia, f = SV 
𝑤𝑘,𝑓 = �̅�𝑘,𝑆𝑉 =

𝐿(𝑤𝑘
𝑡 , 𝑤𝑘

0)

∑ 𝐿(𝑤𝑘
𝑡 , 𝑤𝑘

0)
 

Montgomery-Vartia, f = MV 𝑤𝑘,𝑓 = �̅�𝑘,𝑀𝑉 = 𝐿(𝑝𝑡𝑞𝑡, 𝑝0𝑞0) 

Fisher, f = F 𝑤𝑘,𝑓 = �̅�𝑘,𝐹 = 0.5 · (𝐿(𝑝𝑡𝑞0, 𝑝0𝑞0) + 𝐿(𝑝𝑡𝑞𝑡, 𝑝0𝑞𝑡)) 

 

Applying weights for equation (6) we get logarithmic representations for formulae, that is 

 



 

 

𝑙𝑜𝑔 (𝑃𝑓,𝐴
𝑡 0⁄

) = ∑ 𝑤𝑘,𝑓
𝑘

𝑙𝑜𝑔(�̅�𝑘𝑡 �̅�𝑘0⁄ ) 

 

                    = ∑ 𝑤𝑘,𝑓𝑘 𝑙𝑜𝑔(�̃�𝑘𝑡 �̅�𝑘0⁄ ) + ∑ 𝑤𝑘,𝑓𝑘 𝑙𝑜𝑔(�̅�𝑘𝑡 �̃�𝑘𝑡⁄ ) 

or 

 

(7a) 𝑙𝑜𝑔 (𝑃𝑓,𝐴
𝑡 0⁄

) = 𝑙𝑜𝑔 (𝑃𝑓,𝑄𝐶
𝑡 0⁄

) + 𝑙𝑜𝑔 (𝑃𝑓,𝑄𝐴
𝑡 0⁄

) and index numbers 

 

(7b) 𝑃𝑓,𝐴
𝑡 0⁄

= 𝑃𝑓,𝑄𝐶
𝑡 0⁄

∙ 𝑃𝑓,𝑄𝐴
𝑡 0⁄

, 

 

where subscript f notes formula, A actual price change of averages, QC quality corrections and QA quality 

adjusted price change. If one likes, quality corrections can be decomposed variable-by-variable such that 

𝑃𝑓,𝑄𝐶
𝑡 0⁄

= 𝑃𝑓,𝑄𝐶,𝑥1

𝑡 0⁄
∙ 𝑃𝑓,𝑄𝐶,𝑥2

𝑡 0⁄
∙ … ∙ 𝑃𝑓,𝑄𝐶,𝑥𝑅

𝑡 0⁄
, which holds as an identity. Weighting means here always ‘a weighted-

by-economic-importance’-variable familiar to index numbers. 

 

 

5 Empirical Results 
 

Following table presents the focus of our study. Some words are necessary. In Chapter 3 we define two nested 

partitions and price models for them. In the first step, estimated price models are aggregated from observation 

level into four classes of Table 4.3. 

  

Table 4.3: Focus of the study. 

Partition\Aggregation rule Unweighted geometric average Weighted arithmetic average 

Partition one 1 2 

Partition two 3 4 

 

In the second step, we estimate the price decomposition (6) for classes 1 to 4. To make comparisons possible 

between two partitions, we must aggregate class 3 and 4 into level of partition one. The aggregation is done 

using equation (7a) and index number formulae in Table 4.2 and Jevons (i.e., equal weights). This step gives 

information about differences between formulae and necessity of detailed partition two. Also, when the index 

number formula f decomposes the value change into price and quantity changes (i.e. 𝑙𝑜𝑔(𝑉𝑡/0) = 𝑙𝑜𝑔(𝑃𝑡/0) +

𝑙𝑜𝑔(𝑄𝑡/0), i.e., additive decomposition of value change, 𝐴𝐷𝑉𝐶) for all aggregation levels, we get a simple 

explanation to the difference between the change of unit value in class 2 compared to hedonic price index f for 

class 4 aggregated into partition one (see Suoperä & Auno, 2021, p. 11). In the third step we ask, ‘How closely 

class 3 and 4 are related?’ We simply regress price changes (or index series) for strata in partition two in class 4 

on corresponding price changes in class 3. This simple regression tells correlation between class 3 and 4 and 

empirical analysis ends here. 
 

All index numbers and index series are based on base strategy, where the base period is a previous year 

normalized as an average quarter and the observation period is a quarter of a current year. 

 

 

5.1 Does the Formula Matter? 
 

Population quantities are estimated for partition one, and that is where we have to explore whether the formula 

matters. We compare classes (1, 3) and (2, 4) from table 4.3. First for pair (1, 3): In class 1 aggregation is done 

directly from observations into stratums and in class 3 first into partition 2 and then from partition 2 into strata 

of partition 1 using the index number formulae. The same method is applied for pair (2, 4). Statistical inference 

of price models strongly indicates to use partition 2 – since the explanatory power increases and quality 

adjustment improves when more categories are included in the model. Let us now use the theory of index 



 

 

numbers for answering this question. The results are presented in following figures separately for terraced 

houses and blocks of flats. 

 

 

5.1.1 Synthesis of Unweighted Geometric Average, UWGA 
 

Figure 1: Hedonic index series for actual average prices    Figure 2: Hedonic index series for actual average  

in stratum ‘Espoo, subarea 1, three-rooms’. Basic index    prices in stratum ‘Espoo, subarea 1, three-rooms’.  

Numbers from 2015.0 to 2020.4 (P(2015)=1).                    Excellent index numbers from 2015.0 to 2020.4  

Terraced houses.                         (P(2015)=1). Terraced houses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Hedonic index series for actual average prices    Figure 4: Hedonic index series for actual average  

in stratum ‘Helsinki, subarea 4, one-room’. Basic index    prices in stratum ‘Helsinki, subarea 4, one-room’.  

Numbers from 2015.0 to 2020.4 (P(2015)=1).                    Excellent index numbers from 2015.0 to 2020.4  

Block of flats.                         (P(2015)=1). Block of flats. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 1 to 4 present strategies for 1 and 3 in Table 4.3. In strategy 1 we aggregate observations by equal 

weights directly to conditional averages (i.e., unweighted geometric averages) for partition 1 and in strategy 3 

by equal weights into partition 2 and then into partition 1 using index number formulae. We ask first whether 

weighting matters and second whether the index number formula matters.  In the figures on the left we see that 

basic index number formulae with asymmetric weights are contingently biased (Vartia & Suoperä, 2017, 2018). 

Applying time antithesis for Laspeyres and rectification of Laspeyres by it we get Fishers ideal formula (F). 

Fisher is excellent formula (symmetric weights) and other three formulas (T, MV and SV) are quadratic 

  

  



 

 

approximation of Fisher – contradictory to basic formulas, excellent are very closely related. We conclude thus: 

Weighting matters and choice of formula matters – we prefer partition 2 and excellent index number formulas. 
 

 

5.1.2 Synthesis of Weighted Arithmetic Average, WAA 
 

Figure 5: Hedonic index series for actual average prices    Figure 6: Hedonic index series for actual average  

in stratum ‘Espoo, subarea 1, three-rooms’. Basic index    prices in stratum ‘Espoo, subarea 1, three-rooms’.  

Numbers from 2015.0 to 2020.4 (P(2015)=1).                    Excellent index numbers from 2015.0 to 2020.4  

Terraced houses.                         (P(2015)=1). Terraced houses. 

 

 

Figure 7: Hedonic index series for actual average prices    Figure 8: Hedonic index series for actual average  

in stratum ‘Helsinki, subarea 4, one-room’. Basic index    prices in stratum ‘Helsinki, subarea 4, one-room’.  

Numbers from 2015.0 to 2020.4 (P(2015)=1).                    Excellent index numbers from 2015.0 to 2020.4 

 Block of flats.                         (P(2015)=1). Block of flats. 

 

Figures 5 to 8 present strategies for 2 and 4 in Table 4.3. In strategy 2 we aggregate observations by weights in 

equation (4) directly to conditional weighted arithmetic averages for partition one and in strategy 3 by weights 

in equation (4) first into partition two and then into partition one using index number formulas. In left side 

figures we see that basic index number formulas with asymmetric weights are also here contingently biased 

(Vartia & Suoperä, 2017, 2018). In right-hand figures we see that excellent formulas with symmetric weights 

go hand-in-hand also here. In Figure 6 and 8 index series for conditional unit values (i.e., weighted arithmetic 

averages) are presented by solid lines (strategy 2). They both deviate from excellent index numbers (strategy 4) 

being seriously biased. The strategy 2 differs for two reasons: because of weighting and because of the 

  

 

 



 

 

inadequate quality adjustment due to regional price differences within postal areas and municipalities. Also, 

here as conclusion: Weighting matters and formula matters.  

 

 

 

5.1.3 Synthesis Between Unweighted Geometric and Weighted Arithmetic Average 
 

Statistical inference suggests using partition 2 instead of 1. Same holds also for hedonic quality adjusting – 

strategies based on partition 1 are not ideal. So, comparing strategies 3 and 4 is left. This is done by studying 

relations between index series constructed by base strategy of unweighted geometric and weighted arithmetic 

averages in strategies 3 and 4. We simply regress index series based on weighted arithmetic averages, say y, on 

index series based on unweighted geometric averages, say x. The index series used in regression are constructed 

by Törnqvist formula.  

 

 Model: 𝑦 = 𝑎 + 𝜌 ∙ 𝑥 + 𝜀, 

 

where y is index series constructed using weighted arithmetic average and x corresponding unweighted 

geometric average. Parameter 𝜌 measures in this case correlation between y and x and results are 

 

 

Table 4.4: Estimation results for above model (se in parenthesis). 

Terraced houses 

Direct conditional averages �̂� = 0.96425 (0.00170), 𝑅2 = 0.9629 

Quality adjusted averages �̂� = 0.97088 (0.00170), 𝑅2 = 0.9665 

Block of flats 

Direct conditional averages �̂� = 0.98601 (0.00126), 𝑅2 = 0.9674 

Quality adjusted averages �̂� = 0.99456 (0.00133), 𝑅2 = 0.9643 

 

Correlation between y and x is almost 1 for all estimations. The following Figures for index series constructed 

by Törnqvist formula tell the same story – first, actual average price changes and second, corresponding quality 

adjusted price changes are closely related for conditional arithmetic and geometric averages. 

 

Figure 9: Hedonic index series for actual average prices    Figure 10: Hedonic index series for quality adjusted  

in stratum ‘Espoo, subarea 1, three-rooms’. Arithmetic      prices in stratum ‘Espoo, subarea 1, three-rooms’.  

solid line and geometric dotted from 2015.0 to 2020.4     Arithmetic solid line and geometric dotted from 

(P(2015)=1). Terraced houses.                        2015.0 to 2020.4 (P(2015)=1). Terraced houses. 

 

  



 

 

Figure 11: Hedonic index series for actual average prices   Figure 12: Hedonic index series for quality adjusted  

in stratum ‘Helsinki, subarea 1, three-rooms’. Arithmetic   prices in stratum ‘Helsinki, subarea 1, three-rooms’.  

solid line and geometric dotted from 2015.0 to 2020.4     Arithmetic solid line and geometric dotted from 

(P(2015)=1).  Block of flats.                                    2015.0 to 2020.4 (P(2015)=1). Block of flats. 

 

Table 4.4 tells that index series based on conditional averages (arithmetic and geometric) and their 

corresponding quality adjusted index series are almost identical for partition 2. Figures 9 to 12 complete that 

story – differences of hedonic index numbers constructed for weighted arithmetic and unweighted geometric 

(conditional) averages and their corresponding decompositions are of minimal significance for the most strata 

and their unions – either arithmetic or geometric may be selected as official statistics. Because Statistics 

Finland publishes also average price statistics, we suggest weighted arithmetic average for official production 

of house prices.   

 

 

6 Conclusions 
 

Instead of hedonic time-dummy approach, this study provides an alternative hedonic solution for quality 

adjusting. We combine FE-regression models (see Hsiao, 1986 p.29-32), well-known Oaxaca decomposition 

(Oaxaca, 1973) and traditional index number calculations, using transparent mathematics similarly as in Koev 

(2003) and Suoperä (2004, 2006). We do that for two alternative partitions, two price concepts – for 

unweighted geometric and weighted arithmetic averages – and for several basic and excellent index number 

formulas. Methods are always based on unbiased estimates of prices, quality characteristics and the BLUE of 

betas (homoscedastic errors) with aggregation rules of averages that are consistent in aggregation.  

 

First, we make statistical inference of price models using our two nested partitions and get following results: 1. 

The price models are estimated very efficiently for terraced houses and block of flats (for all 34 equations). 2. 

Test statistics suggest using detailed partition based on postal areas (for more than 1000 stratums). 3. The price 

models are based on heterogeneously behaving cross-sections (significant heterogeneity component of 

behaviors, He(𝑥𝛽)) having detailed stratification  (significant heterogeneity component of detailed 

stratification, He(𝛼)).  

 

Second, we have knowledge of our estimated price models for which we aggregate into detailed stratum-level 

and make Oaxaca decomposition for them following the idea of Koev (2003), but here not only for unweighted 

geometric averages but also for weighted arithmetic averages (Suoperä, 2004, 2006). Both analyses are based 

on analysis of unbiased estimates. Similarly as in in statistical inference of price models we face the question of 

aggregation: should we aggregate observation level price models directly into partition one or two (more than 

100 strata or more than 1000 strata) for calculating price ratios and decompositions of them. Both strategies are 

applied for unweighted geometric and weighted arithmetic average prices. We get the following results: 1. 

Direct aggregation from observations into strata of partition 1 using aggregation rule of unweighted geometric 

average leads to bias of unweighting (see eq. (8)). 2. Direct aggregation from observations into stratums of 

  



 

 

partition 1 using aggregation rule of weighted arithmetic average leads to bias of weighting (see eq. (9)). 3. The 

price models should aggregate into strata of partition 2. 4. Aggregation of price decompositions from strata in 

partition 2 using basic index number formulas with asymmetric weights leads to contingently biased index 

numbers for both unweighted geometric and weighted arithmetic averages. 5. Use excellent index number 

formulas in aggregation of stratums price decompositions all the time. 

 

We suggest the following: 1. Use partition 2 in estimation of price models (for terraced houses and block of 

flats 34 equations including more than 1000 stratums). 2. Form price decompositions for stratums and 

aggregate them into ‘crude’ levels using excellent formulas, say for example Törnqvist. 3. Use aggregation rule 

of weighted arithmetic average, because of standard practice of publishing average prices. 

 

This study give lessons about how ‘weighted-by-economic-importance’ should be done using transparent 

algebra of unbiased estimates. As a warning: Never use asymmetric weighting as weighted-by-economic-

importance-variable without control of quantity (or values) – here this is done effectively using 

accommodation-types in stratification. 
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